If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-12x-2592=0
a = 5; b = -12; c = -2592;
Δ = b2-4ac
Δ = -122-4·5·(-2592)
Δ = 51984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{51984}=228$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-228}{2*5}=\frac{-216}{10} =-21+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+228}{2*5}=\frac{240}{10} =24 $
| (7x+21)=(10x-3) | | -2+m=-18 | | -3m+8m+8=-3+7m+1 | | 4d+5=-3 | | 20x-5=5x+55 | | 2x+6x=-8=56 | | 5(x-4)+2x=4x-11 | | 4x+5=2x=7 | | y-7.64=2.49 | | -2+8(-5+7a)=406 | | x²=8x+20 | | 33.58=7g+3.76 | | 5(3+p)=40 | | 5=6d-7d+4 | | 1/2x+9=26 | | x+12*x/100=365.65 | | 2x+10=43-6x | | 5w+3(w+4)=28 | | 18x+12=-7x-13 | | X^2+(14-x)^2=120 | | -4n-6=2(4n+3) | | (-1/2)+3x=1/4 | | -m+5=-4-1 | | 2x^2+7=2x+8 | | 2b + 12 = −4(b − 12) | | 14-6(2x-3)+15=9 | | 2x+10+x=46 | | Y+13=y+2•2 | | 4(6x+30=96 | | d-88/2=4 | | 74=(2x+7) | | 8n+21=5n^2 |